
74 AGRICULTURAL ECONOMICS REVIEW 

Adoption of Biogas Energy Technology and Its Socio-Economic Impact:  Evidence from 

Northern Ethiopia 

 

 Muuz Hadush 1*, Kidanemariam Gebregziabher 2, Serkalem Dejen3
 

 
1Assistant Professor Department of Economics; Mekelle University, P. O. Box 451 Tigrai, 

Ethiopia. Email: muuz.hadush@mu.edu.et, ;* Corresponding author  
2Associate Professor, Department of Economics; Mekelle University, P. O. Box 451 Tigrai, 

Ethiopia. Email: kidane.gebregziabher@mu.edu.et ;  
3 Ph.D. student, Department of Economics; Mekelle University, P. O. Box 451 Tigrai, Ethiopia. 

Email; serkea16@gmail.com   

Abstract 

 The paper is motivated to identify factors that affect household biogas adoption decisions, 

the intensity and extent of biogas adoption, and its impact on biomass energy consumption and 

medical expenditure. To this end, data was collected from a sample of 200 households that were 

randomly selected using a multistage sampling technique. Logistic regression for the adoption 

decision and propensity score matching to evaluate the impact of adoption on the amount of 

biomass energy consumption and medical expenditure were used. The propensity score matching 

result showed that biogas technology adoption has an impact on medical expenses and biomass 

energy consumption. The average treatment effect results of the study revealed that households 

with biogas technology do spend less money on medication and have lower biomass consumption 

compared to non-adopters.  
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1.Introduction 

In the past half century, a series of conferences have been convened with poverty reduction 

as a central agenda. One possible explanation for this seemingly contradictory phenomenon is the 

low or slow improvement of technologies, amid the proliferation of improved technologies in most 

developing countries, especially in rural areas (Serote et al., 2023). Hence, unless development 

intervention properly targets the rural poor and is effectively supported by the adoption of 

improved rural technologies, no poverty reduction aspiration or declaration will materialize. 

Improved rural technologies, following Rogers (2003), are defined to include equipment (such as 

biogas energy technology in our case), genetic material (improved varieties of animals as well as 

crops), farming techniques, and agricultural inputs that have been developed to improve the 

effectiveness of agriculture and processes. The technology to be introduced needs to be not only 

effective and productive but also sustainable. Sustainable technologies reduce negative effects on 

the environment by reducing or preventing pollution, reducing resource consumption (e.g., raw 

materials, energy), or using less polluting or energy-intensive materials (CELAC, 2017). The focus 

of our paper is that access to modern energy sources is one of the critical factors that affects the 

quality of human life (Legros et al., 2009). Despite the important role of access to modern energy 

sources and the high attention given to the sector by governments, the progress made to get national 

electricity energy supply to the majority of the population in developing countries, especially in 

rural areas, has remained very limited (Amigun et al., 2012).  

Approximately 1.06 billion people (about 14% of the global population) lived without electricity 

as of 2016, about 125 million fewer people than in 2014 (Renewable Energy Policy Network for 
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the 21st Century, 2014). About 2.8 billion people (38% of the global population and about 50% of 

the population in developing countries) live without clean cooking facilities (D’Adamo, 2018).  

The vast majority of people without access to either electricity or clean cooking are in sub-Saharan 

Africa or the Asia-Pacific region, and most of them live in rural areas. For example, 55% and 41% 

of the people without electricity access live in sub-Saharan Africa and Asia-Pacific region 

respectively. Moreover, 67% of people without access to clean cooking facilities live in the Asia-

Pacific region, and 30% live in sub-Saharan Africa (D’Adamo, 2018). Hence, because of the 

shortage and limited access to commercial modern energy and the current economic situations in 

most African countries, despite its adverse environmental impact, biomass has remained and is 

expected to be a dominant energy source for years to come (Amigun et al., 2012). 

Ethiopia, being one of the least developed countries in Sub-Saharan Africa, suffers from a severe 

domestic energy problem, and the country’s domestic energy problem can be manifested by the 

relatively low access to electricity (51% (2020), though better than the Sub-Saharan 48.2% (World 

Development Indicator, 2020). The scarcity of wood fuel and associated problems are more severe 

in northern Ethiopia, where most of the forests were lost and nearly all available areas have been 

converted into cultivation and pasture lands. For instance, in the Tigrai and Amhara regions, dung 

fuel accounts for about 22.8% and 20.4% of the total domestic energy consumption, respectively 

(Damte et al., 2012).  

However, since the last decade, due emphasis has been given to the development of the energy 

sector, and intervention efforts have already started to show some promising results. One of the 

crucial areas of intervention in the energy sector is the development and dissemination of biogas 

technology. The Ethiopian government decided to subsidize bio-digesters in rural households in 

an effort to provide a substitute for firewood, charcoal, dried animal dung, and other biomass 

materials (Kamp and Forn, 2016).  

Biogas plants use locally available raw materials, and the gas obtained from them can be used for 

cooking and lighting activities. In addition to energy services, biogas plants also provide benefits 

like time savings for fuel collection, improving health and sanitation, acting as a source of the best 

organic fertilizer, and in general helping to conserve the environment (Mshandete and Parawira, 

2009).The use of biogas technology has numerous health and social benefits. The health benefits 

include, among others, a reduction in smoke-borne diseases such as headache, eye burning, eye 

infection, and respiratory organ infection. Moreover, biogas adoption improves households’ 

sanitation via toilet connection with biodigesters, the absence of sooths and ashes in the kitchen, 

and a reduction in burning accidents. Biogas saves time for social activities; it improves social 

status in the community; it lessens women’s and children’s work burden; and it offers brighter 

light that assists children to study during the night and  is expected to contribute to the quality of 

education (Ghimire et al., 2015). 

Recently, the Ethiopian Ministry of Water and Energy has developed a strategic plan for the mass 

dissemination of domestic biogas plants in various parts of the country. The National Biogas 

Program (NBP) was implemented to test the feasibility of biogas in actual farm settings. During 

the program’s first phase, the government disseminated 14,000 bio-digesters across four regional 

states: Tigrai, SNNP (Southern Nations, Nationalities, and Peoples), Oromia, and Amhara 

(Mengistu et al., 2016). Therefore, this research tried to address the adoption decision, extent, and 

rate of biogas adoption and its impact on the socio-economic benefits it has resulted on households 

in one of the project districts in Tigrai region, northern Ethiopia. 
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The contribution of this study is twofold. First using hypothetical measures of time and risk 

preferences, this is the first study in East Africa and particularly in Ethiopia to show time and risk 

preferences as key factors influencing biogas technology adoption on top of conventional factors. 

The inclusion of these factors distinguishes this paper from previous studies, which explicitly 

focused on only socio-economic and demographic factors. Second, policymakers will be able to 

gain adequate knowledge from both the findings of adoption and the impact evaluation on how to 

promote and disseminate information regarding this technology in the region. Tigrai is an 

interesting case for the purpose of this study.  

2. Literature review  

Given the stagnant agricultural productivity and persistent food insecurity in low-income 

countries—notably in sub-Saharan Africa (SSA)—there has been continued interest in the 

adoption of new technology and its impact on productivity. In particular, how to increase maize 

yield and sustain its yield gain are major issues for agricultural development in SSA. Such interests 

are supported by changes in favor of the adoption of new agricultural technologies. It includes  the 

release of improved crop varieties and the widespread use of mobile phones, which is expected to 

reduce transaction costs (Aker, 2011); and the buoyant use of microcredit and index-based weather 

insurance, which would help remove cash constraints and excessive exposure to production risks 

(Magruder, 2018). 

In fact, there are signs of the Green Revolution in maize and rice in SSA, reflected in sharply 

increasing yield trends in the advanced regions of Africa (Otsuka and Muraoka, 2017). A widely 

observed puzzling phenomenon in SSA is the low adoption rate of seemingly profitable technology 

(Sheahan and Barrett, 2017). The first major question that the literature on technology adoption 

ought to ask is whether truly productive and profitable technologies are available in the SSA and 

other low-income countries. The related question is what the appropriate agricultural technologies 

are that can bring about significant and sustainable improvement in productivity in the region 

(Ruzzante et al., 2021). 

The literature falls into three paradigms: the innovation-diffusion paradigm; the economic 

constraints paradigm; and the adopter-perception paradigm (Prager & Posthumus, 2010). Each 

paradigm emphasizes the role of different factors in adoption rates and patterns. The innovation-

diffusion paradigm assumes that information is the critical parameter that controls the spread of 

an innovation through a society. This paradigm follows from the pioneering work of Ryan and 

Gross (1943), while Rogers (2003), first published in 1962, remains a seminal work that defined 

the field of innovation diffusion research. This field focuses on the characteristics of innovations 

and how they influence rates of diffusion. Societies are assumed to be composed of a range ‘of 

adopter categories, from innovators and early adopters to laggards, which differ on measurable 

socioeconomic, personality, and communication attributes (Rogers, 2003). Innovation-diffusion 

theory has been criticized for assuming that innovations will be appropriate, which Rogers (2003) 

refers to as ‘pro-innovation bias. 

The economic constraints paradigm postulates that farmers aim to maximize utility and that uneven 

resource endowments lead to observed patterns of adoption (Adesina & Zinnah, 1993). In 

comparison to the innovation-diffusion paradigm, the economic constraints model emphasizes the 

role of economic factors at the individual level in determining adoption decisions. However, this 

model allows for only strictly rational and informed behavior and fails to capture the effects of 

cultural and individual perceptions of an innovation. The adopter-perception paradigm allows for 
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a level of subjectivity by contending that it is the perceived need to innovate and the perceived 

attributes of innovations that determine adoption behavior (Adesina & Zinnah, 1993).  

The characteristics of an innovation and its delivery combine with cultural, contextual, and 

individual factors to influence perception (Adesina & Zinnah, 1993; Prager & Posthumus, 2010). 

Dhehibi (2020) presents an analytical model of decision-making that includes the intrinsic factors 

of knowledge, perceptions, and attitudes, which are conditioned by extrinsic factors such as the 

characteristics of the farmer, the external environment, and innovation. Within the adopter-

perception paradigm, farmers can be considered rational actors who maximize utility; however, in 

contrast to the economic constraint’s paradigm, the definition of utility is expanded beyond simple 

financial considerations.  

Hence, our paper’s contribution rests on the following facts: To the best of our knowledge, we did 

not come across such a contribution. This is perhaps the first study in East Africa and particularly 

in Ethiopia to show time and risk preferences as key factors influencing biogas technology 

adoption on top of conventional factors. Second, the availability of secondary data enables us to 

calculate the rate and extent of use. Third, policymakers will be able to gain adequate knowledge 

from both the findings of adoption and the impact evaluation on how to promote and disseminate 

information regarding this technology in the region. Tigrai is an interesting case for the purpose 

of this study. From a practical and policy perspective, it is relevant to understand how farmers 

decide and use this technology. 

3. Data and Method 

3.1 Description of Data and Study Area 

The study was conducted in Tigrai, northern Ethiopia. In order to select respondents, the 

study used multistage sampling techniques. In the first stage, three villages were selected 

purposefully based on the availability of biogas technology. In the second stage, the population of 

the selected villages was stratified into two groups: adopters and non-adopters of the biogas energy 

technology. Then, a total of 200 samples consisting of 88 adopters and 112 non-adopter 

respondents were randomly selected from the three villages in proportion to the size of the 

household in each village. To collect the socio-economic data, a semi-structured questionnaire was 

administered. Experimental design questions were also included in order to elicit the risk, loss, and 

time preferences of respondents. 

The result from the descriptive statistics is presented in Table 1. Referring to Table 1, the 

observable dependent variable 𝑌1 in equation (2) take a value of 1 if the farmer adopts biogas 

technologies, and 0 otherwise. The results indicated that 56% of a total of 200 rural farmers were 

adopters of biogas and 44% were non-adopters during the study period. The adoption rate is very 

low throughout the country due to the rising cost of installation and lack of awareness (Marie et 

al., 2021; Kamp & Forn, 2016). Depending on the location and season, the construction cost of 

biogas plants fluctuates. However, the average price of a single biogas plant is estimated to be 

ETB 13,000 (USD 582.7) for a 6m3gas plant, ETB 13,500 (USD 605.1) for an 8 m3 gas plant, and 

ETB 14,000 (USD 627.5) for a 10 m3 biogas plant(Marie et al., 2021). 50% of the initial cost 

subsidy was provided by the Ethiopian National Biogas Programme (NBPE) to biogas users to 

compensate, encourage users, and improve the affordability of the biogas plants (Kamp & Forn, 

2016), implying that the cost of installment is shared by the household and the government itself. 

The average age of adopters and non-adopters was 43.85 and 50.09 years, respectively, which 



78 AGRICULTURAL ECONOMICS REVIEW 

implies that there was a significant age difference between adopters and non-adopters. Adopters 

on average have more than 6.2 family sizes as compared to non-adopters (4.5), with an average 

size of 5.36 members in the study area. Biogas users owned a herd size of 5.8 TLU units, while 

non-users of biogas owned about 3.2 TLU units, with a mean of 4.5 units. The average farm size 

is 0.5 ha for users as compared to 0.4 ha for non-users.  

On average, farmers using biogas spend 37.33 minutes more than non-users, who only 

spend 45.40 minutes per day to travel to the nearest market. Adopters of biogas are seemingly 

better off than non-adopters in terms of farm income. On the planting of trees, the average planted 

tree is not statistically different between the two groups, but non-adopting farmers have slightly 

higher (238) values compared with the value of adopters (200). In this study, male-headed 

households represent about 80.5%. Among male farmers, 78.6% are non-adopters, and 83% are 

adopters. 

Of the farmers contacted, the proportion of impatient farmers is higher (85%) than patient farmers, 

which is 15%, of which 73.87% are impatient farmers who adopt biogas while 93.75% are 

impatient farmers who decide not to adopt the technology. Biogas users had a significantly higher 

marital status (79.54%) than that of non-users (58.03%). Biogas users have reliable and sufficient 

water sources, on average 2.5 times higher than those of non-users. Moreover, 82.5% of the 

farmers reported not having access to grid electricity, of which 96.6% were found to be biogas 

users. Adopters on average experience more than twice (1.96%) as many technical labor skills as 

compared to non-adopters in the study. 

3.2. Hypothetical Experimental Design   

The instrument we employed in this paper instead is similar to the approach of Noussair et 

al. (2013) and Drouvelis and Jamison (2012), asking respondents to directly compare declining 

present choices with constant future choices. A simple hypothetical risk elicitation instrument was 
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presented to our respondents using a similar approach to Noussair et al. (2013) and Drouvelis 

Jamison (2012), who measured risk aversion by counting the number of safe choices made by the 

individual in five and seven list choices, respectively. 

In order to elicit risk preferences, participants were shown a table with seven rows and asked to 

choose between a safe option and a lottery option in each row, where the safe option is held 

constant in each row, but the amount in the lottery option increases from row to row. More 

precisely, first-row subjects choose to receive 60 ETB with certainty, or they choose to play the 

lottery and have a 50 percent chance of receiving 0 ETB and a 50 percent chance of receiving 110 

ETB. The amount in the lottery row increases from 110 ETB to 120, 130, 140, 160, 180, and 200 

ETB. Our measure of individual risk-aversion is the number of instances in which a respondent 

chose a certain row. Thus, our risk aversion measure ranges from the lowest possible value of 0 to 

the highest possible value of 7. Then respondents revealed their risk preferences by switching from 

option 1 to option 2. 

A choice of zero safe option out of seven choices indicates a risk-loving individual, and a risk-

neutral individual would make either one or two safe choices out of the seven choices, and more 

than two safe choices indicate risk aversion. More safe choices indicate greater risk aversion. 

Consulting the work of Drouvelis and Jamison (2012) as a measure of loss aversion, we used the 

frequency with which a subject chose the safe option. 

In order to test whether heterogeneity in individual time preferences affects biogas technology 

adoption, we measure individual time preferences using a hypothetical question (Ashraf et al., 

2006) to link the state of impatience to biogas adoption. In this case, individuals under two 

consecutive questions were initially asked to make a choice between having one chicken now or 

two chickens at the end of this year (would you like to have one chicken now or two chickens at 

the end of this year). In the second stage, we presented individuals with the same question but 

changed the two chickens into three chickens (would you like to have one chicken now or three 

chickens at the end of this year?). Depending on the individual’s response, we classify individuals 

as patient for those who prefer to wait and always choose the future reward (two or three chickens) 

in both cases or impatient for those who always want the immediate benefit (one chicken). 

Results from Table 1 revealed that the mean risk aversion of user farmers appears to be 3.57 as 

compared to the mean value of 4.69 for non-user households, which is almost statistically different 

at 10%. We also find that the average loss aversion is 5.04 for user farmers and 5.93 for non-users 

in risk field experiments, suggesting that adopting farmers in general are less risk-takers and loss-

averse in the study area. 

3.3 Econometrics model specification 

To analyze the collected data both simple descriptive and inferential statistics were used. 

While the binary probit model was estimated and applied so as to analyze the adoption decision of 

Biogas energy technology, the propensity score matching (PSM) was used to evaluate the impact 

of adoption on medical expense and biomass consumption based on the strong assumption of 

conditional independence. The net benefit obtained from adopting biogas energy technology is 

denoted by the latent variable,𝑦∗ which is assumed to be a continuous variable that we do not 

observe and is determined by the model as follows: 

𝑦∗ = 𝑥𝛽 + 𝑒  (1) 

Where 𝑥 and 𝛽 are vectors of observed explanatory variables and parameters including a constant 

respectively. The model is shortly represented by the scalar index 𝑥𝛽 which ranges from the value 
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zero to one. The residual term 𝑒 is assumed to be uncorrelated with 𝑥 i.e. x is not endogenous 

(Wooldridge, 2010). While we do not observe y, we actually observe whether or not the individual 

farmer made a decision to adopt the biogas energy based on the following discrete choice rule:  

y=1 if 𝑦∗ > 0 

y=0 if 𝑦∗ ≤0  (2) 

Since we do not have data on y* we cannot estimate the model (2) with OLS as usual. Instead, we 

can estimate parameters of interest using probits and logits traditionally viewed as suitable models 

when the dependent variable is not fully observed (Wooldridge, 2010). Following this, the 

probability that a ’positive’ choice is made (e.g. adopting, as distinct from not adopting, a biogas 

technology) is modeled as: 

                                                    Pr(𝑦 = 1|𝑥) = Pr(y* >0│x), 

Pr(𝑦 = 1|𝑥) = Pr(𝑒 > −𝑥𝛽)   (3) 

This expression produces the logit model, Ʌ(𝑥𝛽) if e follows a logistic distribution, and the probit 

model, ɸ(xβ) if e is follows a standard normal distribution as: 

                                                        Pr(𝑦 = 1|𝑥) = Ʌ(𝑥𝛽) 

                                                        Pr(𝑦 = 1|𝑥) = ɸ(xβ)     (4) 

According to Wooldridge (2010), the principle is that Probit and logit models are estimated by 

means of Maximum Likelihood (ML). Assuming that the probability of observing 𝑦𝑖 = 1 is G(xβ) 

and the probability of observing 𝑦𝑖 = 0 is 1-(xβ), the probability of observing the entire sample 

when l refers to the observations for which y = 1 and m to the observations for which y = 0. is 

given by  

ℒ(𝑦|𝑥; 𝛽) = ∏ G(𝑥𝑖β)

𝑖𝜖𝑙

+ ∏[1 − G(𝑥𝑖β)]

𝑗𝜖𝑚

  (5) 

 
    From the previous expression, we have seen that we get G(xβ) when y = 1 and 1-(xβ) when y = 

0.  The expression in equation (5) can be rewritten as  

ℒ(𝑦|𝑥; 𝛽) = ∏ G(𝑥𝑖β)𝑦𝑖

𝑁

𝑖𝜖𝑙

+ ∏[1 − (𝑥𝑖β) ]1−𝑦𝑖

𝑁

𝑗𝜖𝑚

(6) 

From this expression, we can produce the log likelihood for the sample is by converting equation 

(6) in to log likelihood function  

ln ℒ(𝑦|𝑥; 𝛽) = ∑{𝑦𝑖 ln G(𝑥𝑖β) + (1 − 𝑦𝑖) ln[1 − (𝑥𝑖β) ]}

𝑁

𝑖=1

(7) 

Considering G as the logistic CDF, then we obtain the logit log likelihood by maximizing log 

likelihood function 

 

ln ℒ(𝑦|𝑥; 𝛽) = ∑{𝑦𝑖 ln ɅG(𝑥𝑖β) + (1 − 𝑦𝑖) ln[1 − Ʌ(𝑥𝑖β) ]}

𝑁

𝑖=1

(8) 

Which yields the final shape of logit log likelihood function  



2024 Vol 25, No 1                                                    81 

 

 

ln ℒ(𝑦|𝑥; 𝛽) = ∑ {𝑦𝑖 ln (
𝑒𝑥𝑝(𝑥𝑖β)

1 − 𝑒𝑥𝑝(𝑥𝑖β)
) + (1 − 𝑦𝑖) ln (

1

1 − 𝑒𝑥𝑝(𝑥𝑖β)
)}

𝑁

𝑖=1

(9) 

       and probit log likelihood function if G follows standard normal CDF 

ln ℒ(𝑦|𝑥; 𝛽) = ∑{𝑦𝑖 ln ФG(𝑥𝑖β) + (1 − 𝑦𝑖) ln[1 − Ф(𝑥𝑖β) ]}

𝑁

𝑖=1

(10) 

 

In most cases the main interest is to examine the effects on the response probability 

Pr(𝑦 = 1|𝑥)a s a result of a change in one of the explanatory variables, the partial effect of 

explanatory variables say𝑥𝑗 on Pr(𝑦 = 1|𝑥)is obtained from the partial derivative as follows: 

𝜕Pr(𝑦 = 1|𝑥)

𝜕𝑥𝑗
=

𝜕G(𝑥𝑖β)

𝜕𝑥𝑗
(11) 

In the case of a discrete variable, we evaluate the effect on the response probability depending on 

all the values of the other explanatory variables and the values of all the other coefficients. 

Determining whether the effect is positive or not is known according to the sign of the coefficient. 

Thus, our interpretation in this paper basically results from this marginal effect calculation 

(Wooldridge, 2010). 

In order to estimate the impact of biogas energy adoption on biomass energy consumption, we 

used propensity score matching (PSM) based on a strong assumption of conditional independence. 

Here, we assume that the adoption or treatment effect is based on observable characteristics such 

as the size of cattle or dry matter around the homestead. Implicitly, the PSM method assumes 

selection of the treatment is based on observable characteristics only and hence unobserved 

characteristics should not affect the biogas technology adoption (Rosenbaum and Rubin, 1983). 

The impact evaluation is done by matching biogas technology adopters with non-adopters 

according to their propensity score using PSM techniques and the average difference was 

computed. Households who adopt biogas technologies were compared to those who would not 

own/adopt. In reality, we can’t observe both states at the same time; individuals are either in the 

treated or untreated states. That is we observe  

𝑌𝑖 = 𝐷𝑖 + 𝐷𝑖𝑌1𝑖 + (1 − 𝐷𝑖)𝑌0𝑖 

𝑦𝑖 = {
𝑦1𝑖, 𝑖𝑓𝐷𝑖 = 1
𝑦0𝑖 , 𝑖𝑓𝐷𝑖 = 0

  (12) 

Where 𝑌1𝑖 indicates for users and "𝑌0𝑖 for none users and D=1 indicates for an individual being 

treated D=0 otherwise. For matching to be valid, the primary assumption underlying matching 

estimators is the Conditional Independence Assumption (CIA) which states that conditional on the 

set of observable characteristics of X, the non-treated outcomes are independent of treatment status 

1 0 |( , ) i iY Y D X⊥ (Wooldridge, 2002). The CIA requires that the set of explanatory variables (X) 

should contain all the variables that jointly influence the outcome with no treatment as well as the 

selection into treatment. The second assumption is the common support or overlap condition

( )(0 < 1)< P T ensures that treatment observations have comparison observations “nearby” in the 

propensity score distribution (Heckman et al., 1997). This implies that PSM depends on a roughly 

equal number of users and user observations so that region of common support can be found and 
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user units would therefore have to be similar to non-user units in terms of observed characteristics 

which are unaffected (Khandker et al., 2010). 

The propensity weighting method uses the propensity score and estimates both average treatments 

effects (ATE) and treatment effect on the treated (ATT) consistently (Wooldridge, 2002). The 

treatment effects are simply the differences in outcomes of treated and control groups.  

4. Results and Discussions 

4.1. Empirical Results   

The estimation of the binary probit explained the behavior of biogas technology adoption 

decisions. The choice of explanatory variables is based on previous literature suggestions that a wide 

range of socio-economic, technical, and physical factors influence new technology adoption in 

developing countries (Feder et al., 1985; Foster and Rosenzweig, 2010; Hadush et al., 2019; Hadush 

& Gebregziabher, 2022; Cole et al., 2010; Conley & Udry, 2010; Duflo et al., 2011; Liu & Huang, 

2013; Duquette et al., 2013). Marginal effects (ME) computed for the use decision are presented in 

Table 2. A set of explanatory variables was used for this estimation, revealing how these variables vary 

in terms of direction, magnitude, and significance in influencing adoption decisions. 

The results from the probit model explaining the adoption of SF practice correctly predicted 80% of the 

responses (Table 2). The χ2 for the log-likelihood test of the hypothesis that the regressors have zero 

influence on farmers’ adoption was significant. Thus, the hypothesis that the variables have no explanatory 

power was rejected. The results of the Likelihood Ratio test and the Wald test showed that the inclusion of 

selected variables increased the model fit significantly. This was consistent with the hypothesis that there 

exists a strong relationship between these variables and the biogas adoption decision. 

Econometric findings from Table 2 confirmed that 11 explanatory variables selected from the 

adoption literature shaped the decision to adopt biogas technology. The results show that patience 

induces biogas adoption. It has been argued that a high level of impatience prevents farmers from 

making long-term investments. This increases the likelihood that the individual will remain below 

the poverty line since poor people have forgone higher and more sustainable returns (Duflo et al., 

2011; Le Cotty et al., 2014; Ashraf, 2009). Our result showed a positive association between biogas 

adoption and patience, implying that patient farmers have a 28% higher probability of biogas 

adoption than their impatient counter-participants. This concurs with our prior expectations and 

earlier findings (Yesuf, 2004; Le Cotty et al., 2014; Duflo et al., 2011; Hadush & Gebregziabher, 

2022), whose findings stated that present-biased or impatient farmers postpone new technology 

adoption in Africa and Asia. Likewise, a study by Tarozzi and Mahajan (2011) using the time 

preferences of Indian farmers revealed that low adoption of re-treating bed nets is related to present 

bias. A recent finding by Liebenehm and Waibel (2018) indicated that individual farmers with 

high discount rates were found to have low prophylaxis take-up in West Africa. 

Earlier findings indicate that risk preference affects farmers’ willingness to try new practices 

(Greiner et al., 2009). It affects the adoption of new technologies in many ways and has been found 

to reduce the adoption of new technologies and practices since it demonstrates a fear of variance 

in outcomes (Brick and Visser, 2015; Di Falco, 2014). The variable representing risk preference is 

negative and significantly different from zero, suggesting that more risk-averse farmers are 7.05% less 

likely to adopt biogas technology, consistent with the findings of (Liu and Huang, 2013; Hadush & 

Gebregziabher, 2022; Liebenehm and Waibel, 2018), who  revealed a negative  relationship  between  

risk aversion and technology adoption. Similarly, loss aversion is considered to affect technology 

adoption (Liu and Huang, 2013; Kijima, 2019). In this case, it is found that higher loss aversion, 
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holding other variables constant, reduces the probability of biogas adoption by 12.6%. The finding 

concurs with t he  findings of (Liu and Huang, 2013; Liebenehm and Waibel 2018; Kijima, 2019; 

Hadush & Gebregziabher, 2022) whose results show a negative relationship between loss aversion 

and technology adoption.  

The variables farm size, farm income, and planted trees had expected signs with a positive effect on 

biogas adoption in line with those of (Mengistu et al., 2016; Smith et al., 2015; Omer, 2012) but were 

found to be statistically irrelevant. As the age of household heads increases by one year, the adoption of 

biogas decreases by 1.7%. This reflects that younger household heads were found to be more likely 

to adopt biogas technology than older households because older people are more risk-averse than 

younger people, concurring with the findings of (Kabir et al., 2013; Walekhwa et al., 2009) who 

reported a negative relationship between age and biogas adoption. As expected, the variable family 

size appears to be a positive factor, causing biogas adoption to increase by about 13.9%. Similar 

findings are reported by Wang et al. (2011), who found that more labor positively influenced 

households’ willingness to adopt biogas. The value of the marginal effect for cattle size indicates 

that the probability of adopting biogas technology increases by 5.6% compared to their 

counterparts in the study area. This finding is consistent with the earlier study by Iqbal et al. (2013), 

who posit that an increase in the number of cattle increased the probability of biogas adoption. 
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Empirical results show that households with access to grid electricity were less likely to adopt 

biogas technology than their counterparts, increasing biogas adoption by 34%. Contrary signs are 

found in the works of Berhe et al. (2017), who found that farmers with electric access have positive 

energy preferences towards the use of firewood and dried dung. Married household heads were 

found to adopt biogas technology more than single household heads in the study. The marginal 

effect of marriage indicates that the probability of adopting biogas technology for married 

households was found to be about 30.4% higher in the study area. This is in conformity with that 

of Mwirigi et al. (2014) in Kenya and Mengistu et al. (2016) in Ethiopia, who confirmed that 

married households were more likely to adopt biogas technology compared to single households. 

Results further showed that the variable sex has a positive sign but is statistically insignificant. 

This reflects that female-headed farmers are more likely to allocate more attention and time to 

biogas investment than male-headed farmers, in line with that of Wang et al. (2013). 

Distance from the market may affect biogas adoption by increasing or decreasing the cost of 

transporting construction materials. As anticipated, each additional distance is associated with an 

estimated 1.1% decrease in the use of biogas technology. This finding agrees with that of Kelebe 

et al. (2017), who revealed a significant negative relationship between biogas adoption and market 

distance. For households that get technical assistance, the probability of adopting biogas was 25% 

higher than the probability for households without technical assistance. Similar results are found 

in the works of Hazra et al. (2014) and Momanyi and Benards (2016), who noted that a lack of 

skilled labor and technical knowledge had hindered biogas dissemination and adoption in Ghana. 

The marginal effect of water source indicates that those who have sufficient water availability were 

found to be 49% more likely to adopt biogas technology than those who do not have sufficient 

water availability in the study area. This finding is in consonance with the idea that the limited 

availability of water was a constraint to biogas operation and production (Mwirigi et al., 2014). 

4.2 Impact of Biogas Adoption.  

Biogas is both a clean and environmentally friendly biotechnology with considerable 

positive environmental externalities. It is also a clear-burning fuel free of indoor pollution. It 

mitigates family health hazards from indoor air pollution and exposure to smoke from conventional 

burning. A study conducted by Ghimire (2015) concluded that biogas technology has an economic 

dividend in that it saves expenditures on fuel sources, saves time to utilize in other income 

generation activities, increases soil fertility and reduces the required quantity of chemical fertilizer, 

reduces health expenditures due to a decrease in smoke-borne diseases, and creates employment 

opportunities. It burns cleanly, so its use minimizes eye illnesses that result from the burning of 

traditional biomass fuels. Biogas technology provides health benefits not only to its users but also 

to the whole community (Aggarangsi et al., 2013). Moreover, biogas is a clean cooking fuel, 

increasing time for washing cooking utensils by an average of 39 minutes per day and saving time 

for attending school or other productive purposes (Arthur et al., 2011). 
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The estimated impacts of biogas adoption are presented in Table 4.4. The predicted outcomes from 

the PSM models using different matching algorithms are used to compute the average treatment 

effect on the treated (ATT). Referring to Table 3a, the result showed that the impact of biogas 

technology adoption on average annual medical expenses is negative and significant. The finding 

shows that the decrement in annual health expenditure for user households ranges from a minimum 

of 169.318 ETB using nearest neighbor (NN) matching to a maximum of 254 ETB in the case of 

stratification and interval matching. This coincides with the results of Abadi et al. (2017), whose 

results revealed a negative relationship between biogas use and medical expenditure. The results 

from Table 3b showed that the adoption of biogas technology significantly reduces households’ 

total biomass consumption in kg per year. Adopters of biogas are seemingly better off than non-

adopters in terms of biomass consumption (kg) per year, implying that the adoption of biogas 

decreases biomass consumption from a minimum of 627 ETB using Kernel Matching to a 

maximum of 690 ETB in the case of Nearest Neighbor (NN) Matching. This result agrees with the 

findings of (Sakarombe, 2017) in that biogas technology reduces emissions by reducing firewood 

consumption and, hence in conserving forests. 

5. Conclusions and Suggestions 

Enhancing rural farmers’ livelihoods using environmentally friendly biotechnology has 

become an increasingly global challenge. Biogas technology is a clean-burning fuel free of indoor 

pollution that improves fuel or energy efficiency, saves time for schooling or other productive 

activities, and reduces environmental pollution and health problems. The study investigated the 

adoption of biogas technology using the probit model and its impact on households’ health 

expenditure and biomass consumption by estimating the propensity score matching in Ethiopia. 

The empirical results indicated that adopting biogas technologies has economic and environmental 

benefits. The technology is economical and environmentally sustainable as it reduces annual 

medical expenditure and biomass consumption in KG per day. It was found that risk and time 

preference parameters significantly determine the adoption decision of biogas technology. We 

found that farmers’ aversion to risk and loss constrains the adoption of new biogas technology. 

Results suggest that the low take-up of biogas technology is related to loss aversion and 
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impatience, implying long-term higher returns are forgone and increasing the risk of perpetual 

poverty. Distance to the nearest market and technical assistance barriers have been hindering 

biogas technology adoption. As expected, the availability of water, family size, and cattle size were 

shown to be essential for inducing biogas technology adoption. As a complement, biogas 

technology adoption responds positively to marriage and negatively to age. 

Interventions that overcome the constraints related to technical assistance could facilitate the 

uptake of biogas technologies. We argue that technical assistance and the availability of water 

sources should be in place to enhance the uptake of biogas technology. Strategies to counteract 

risk aversion and high discounting behavior are important to improve the adoption of new 

technology, thereby enhancing the smallholder economy in Ethiopia. 

Ethiopia, being one of the least developed countries in Sub-Saharan Africa, suffers from very low 

per capita energy consumption and the dominance of traditional biomass fuel use. In 2009, 

traditional biomass fuels accounted for 92% of the total energy consumption, whereas modern 

fuels constituted the remaining 8%. Therefore, this paper has three policy implications: First, 

promoting biogas technology adoption in the region is a paramount policy, not only to improve 

the economic livelihood of rural households but also to conserve the environment by reducing the 

firewood and charcoal destruction and extraction rates in the region. To this effect, East African 

countries, including Ethiopia, are required to move forward in promoting biogas technology 

regionally as well as internally within their regions. Second, more than 70% of the nation’s 

population entirely depends on natural forests as firewood. Subsidizing bio-digesters in rural farm 

households in an effort to provide a substitute for firewood, charcoal, and dried animal dung 

materials not only improves health and sanitation but also saves time for fuel and charcoal 

collection. Third, policymakers should then consider the importance of farmers’ risk and time 

preference when promoting new technology adoption. 
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