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Abstract

The paper provides estimates of productivity growth in the 4-digit SIC food and bever-
ages manufacturing industries in the US for the period 1986-96 using Balk’s (2001)
decomposition of the Malmquist productivity index (MPI). The empirical results suggest
that for the overwhelming majority of industries productivity changes we driven primar-
ily by technical change and technical efficiency change. A comparison between the Di-
visia index estimates provided by the US NBER and the MPI estimates shows that they
had different distributions and the former were systematically lower than the latter.
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Introduction

The Food and Kindred products industry in the US includes firms and their estab-
lishments that manufacture or process food and beverage for human consumption and
other related products such as vegetable and animal fats and oils and prepared feeds for
animals and fowls. According to the US National Bureau of Economic Research
(NBER) the industry in the recent years contributes to the manufacturing sector almost
9 percent of the total employment, 12 percent of the total value of shipments, and 10
percent of the total value added. It, therefore, not only exercises significant influence
backwards (to farmers) and forward (to distributors and consumers) but it may affect the
health of the US economy as a whole (McKinsey Global Institute, 1993).

In the last twenty years a large number of studies have been carried out on the be-
havior and conduct of the US Food and Kindred products industry. To mention a few,
Ball and Chambers (1982), Mullen et al. (1988), and Huang (1991) investigated input
demand and input substitutability; McCorkle et al. (1988), analyzed the industry dynam-
ics and the role of economic policy; Gisser (1982), Azzam and Schroeter (1991) and
(1995), Bhuyan and Lopez (1997) and (1998) and Lopez et al. (2002) obtained meas-
ures of oligopoly and oligopsony power and quantified the welfare losses associated
with non competitive practices.

Less attention, however, has been paid to the industry’s performance (efficiency and
productivity). Heien (1983), used a Divisia (growth accounting) approach to estimate
Total Factor Productivity (TFP) growth in US food processing and distribution sector
for the period 1950-77. Jayanthi et al. (1996) assessed the efficiency of 20 food manu-
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facturing plants employing the Operational Competitiveness Ratings Analysis (OCRA)
(Parkan, 1994). Also, the NBER reports rates of TFP growth for all four hundreds and
fifty 4-digit SIC manufacturing industries in the US (among them are industries belong-
ing to Food and Kindred products group) using the Divisia index and information from
the Manufacturing Productivity (MP) Database.

The small number of studies on efficiency and productivity in food manufacturing is
quite disconcerting. According to McKinsey Global Institute (1993) product standardi-
zation among the US food manufacturers has reached such level that production effi-
ciency and productivity growth are the keys to competing in the industry. For Miller and
Roth (1994) food manufacturers should be viewed as the “marketeers” who compete
primarily through infrastructural changes aiming at cutting costs.

The objective of the present paper to measure productivity growth in each of the
forty nine 4-digit SIC food and beverage manufacturing industries in the U.S for the
period 1986-1996. To this end, the paper utilizes exactly the same output and input data
as the NBER study but a different analytical approach. In particular, the empirical
analysis here relies on the Malmquist Productivity Index (MPI) and its decomposition
as recently developed by Balk (2001). Both the Divisia and the Malmquist indices are
non parametric. They are also proper indices in the sense that they satisfy the desirable
properties of identity, monotonicity, separability, and proportionality (Orea, 2002). The
Divisia index assumes perfect competition in output and input markets in order to obtain
weights for the time rates of changes of the individual production inputs (Bartelsman
and Gray, 1996). The assumption of perfect competition, however, is not very plausible
for the Food and Kindred products industry in the US. Relevant information suggests
that the degree of concentration in the industry as a whole has been rising very fast since
the early 80°s (Harris, 2002). Moreover, econometric studies in the New Empirical In-
dustrial Organization (NEIO) framework (e.g. Azzam and Schroeter 1995; Bhuyan and
Lopez, 1997 and 1998; Lopez et al., 2002) have provided solid evidence on the exis-
tence of monopoly or monopsony power in a considerable number of the 4-digit SIC
food and beverage manufacturing industries. The MPI requires data on output and in-
puts only and dispenses altogether with behavioral assumptions. Therefore, it appears to
be more appropriate for measuring productivity growth in the sector. The present study
compares estimates from the two alternative approaches (MPI and Divisia) to assess the
impact of using a potentially implausible behavioral assumption on the resulting rates of
TFP growth.

Estimation of productivity growth is important for evaluating changes in the per-
formance of an industry over time. Of equal importance, however, is the identification
and quantification of factors driving productivity changes. Balk’s (2001) approach al-
lows for a meaningful decomposition of the MPI into four independent factors making,
thus, possible to obtain richer insights into the sources of growth. The paper is struc-
tured as follows: Section 2 presents the analytical framework and Section 3 the data and
the empirical model. Section 4 contains the empirical results, while Section 5 offers
conclusions and implications. Appendix A provides a brief description of the industries
considered and Appendix B certain technical details.
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The MPI Index and Its Decomposition

Let the input quantities be represented by an N-dimensional vector of non-negative
real values x =(x;, x5, ..... , Xy) € Riv and the output by the non negative scalar y .
The technology at period ¢ is given by the set S’ of all feasible input-output combina-
tions and the input sets are defined by L'(y")= {x': (x',»") € S'}. An input distance
function (D}) is the maximum feasible radial contraction of the input vector with out-
put held fixed. Formally,

Di(x',y")=sup{d>0:x"/5 e L'(H')} (1)

For any input quantity vector x', x'/ D] is the smallest input vector from the origin
through x that is able to produce y’. The input distance function is linear homogenous
in x' and increasing in )’ . It takes values greater than or equal to one if the input vec-
tor x’ is an element of I'(y"), where the value of 1 implies that there is technical effi-
ciency in production.

Balk (2001) extended the traditional Malmquist productivity index (Caves, Christen-
sen, and Diewert, 1982) by comprising measures of technical change (TC), technical
efficiency change (EC), scale efficiency change (SEC), and an input-mix effect (IME).
An input-oriented measure of TFP growth between periods ¢ and #+1 encompassing
all four factors may be written as

]WP];’H'I — (Tcit,t+l) * (Ecit,t+l) * (SECit,tH) * (]ME”HI) (2)’
where
v v 05
oot t t+l ot t
MPI;,I+1 — vDi (x In4 ) * vDi (x I»4 ) (3)’
D,t(xt”,yt”) Dit+l(xt+1’yt+l)
Dt+l( 1+1 t+l) Dt+1( t t) 0.5
TC{,t+l _ XY « i XLy 4),
’ D"y Dl
DI (x",y")
ti+l )
ECT = —— ),
Di (x N4 )
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i(x 9y ) i (x 9y )
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SEC;‘,I+1 — Df (x 9y * ) * Di+ (x " 9y * ) (6),

Dl(x',y") DM (", ")

L DIy DALY



70 AGRICULTURAL ECONOMICS REVIEW

_D,'(x'”,y'”) Dit+1(xt+1’yt)10'5

Dvit(xt+1’yt+l) . D:t/+l(xt+l,yt)
D;‘(xt’yt+l) D;+l(xt,yt)

and IME!"! = (7)

| Di(x',y" D' (x',y") |

In the above, the symbol v denotes the cone (constant global returns to scale) techno-
logy which is associated with the actual production technology, S’.

An output-oriented measure can be derived as well which in the place of the IME
contains an output-mix effect (OME). For the single-output production process as the
one considered here, however, the OME effect is always equal to unity. The input-
orientation in this case provides a richer decomposition of the MPI and it is also consis-
tent with the effort of food manufacturing firms to reduce costs by economizing on in-
puts (Miller and Roth, 1994). It should be emphasized that because the MPI is defined
for a cone technology it makes no difference for the estimates of the productivity
growth rates (derived from equation (3)) whether one uses an input- or an output- orien-
tation." A value larger (smaller) than unity in any component of the MPI, implies an
improvement (deterioration) in that component. The overall effect of the four independ-
ent components is reflected in the MPI where values of it above unity indicate increases
in TFP while values below unity indicate declines.

The Data and the Empirical Model

The data for the empirical application were obtained from the Manufacturing Pro-
ductivity (MP) database of the NBER (2002). A distinct advantage of the MP Database
is that it gathers together many years of data, adjusts for changes in the industry defini-
tions over time, and links in a few additional key variables (i.c., capital stocks and price
deflators). A detailed documentation of the MP database can be found in Bartelsman
and Gray (1996).

The MP Database has been used (expect for calculating TFP growth rates for the 4-
digit SIC industries) in a variety of research projects. Bartelsman et al. (1994) and Bart-
lesman (1995) estimated production functions using industry-level data. Dunne and
Schmitz (1995) and Berman et al. (1994) analyzed the links between wages and industry
characteristics and the demand for skilled labour. Bhuyan and Lopez (1997) investi-
gated the degree of oligopoly power in food and tobacco manufacturing. In a some stud-
ies (e.g. Gray, 1987; Amato and Amato, 2001) the TFP productivity growth estimates
from the MP Database have been employed as dependent variables in regression models
looking at a variety of possible influences on productivity.

As in the NBER study, the output in this paper is the value of shipments which is
assumed to be produced with the use of 4 inputs, namely, production labor, non produc-
tion labor, materials (non energy and energy ones), and capital. The production labor is
measured in terms of the number of production worker hours (millions) and the non
production labor in terms of the number of non production employees (thousands). The
value of shipments, the cost of materials, and the capital stock are expressed in real
(1987) prices.
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The Empirical Results

The distance functions involved in the components of MPI have been calculated for
each year in 1986-96 using the OnFront 2 program (Fare and Grosskopf, 2000).> Table
1 presents average values for each independent effect, by industry. Starting from the TC
component, we observe that technical change was progressive in forty one and regres-
sive in seven out of forty nine industries, while the technology level of industry 2043
exhibited no change. Very strong rates of technological progress were achieved by in-
dustries 2075, 2082, 2084, 2086, 2087, and 2096. At the same time, the industries 2051,
2068, 2092, and 2097 appear to have experienced sizable technical regress. Turning to
technical efficiency change, we observe that technical efficiency deteriorated in twenty
one, improved in fourteen, and exhibited no change in fourteen industries. The largest
(in percentage terms) declines occurred in industries 2023, 2077, 2052, 2084, and 2092
whereas the largest improvements occurred in industries 2063, 2044, and 2032. Techni-
cal efficiency levels have been calculated for each individual industry and year.’> Mind-
ful of space limitations we discuss here only the general picture emerging from the rele-
vant calculations. Eleven industries (2011, 2021, 2043, 2067, 2068, 2075, 2076, 2082,
2086, 2087, and 2097) were technically efficient in all periods. Six industries (2013,
2015, 2022, 2051, 2053, 2083) attained (on the average) levels of technical efficiency
above 0.9, while seven (2024, 2034, 2035, 2045, 2069, 2077, and 2084) attained (on the
average) levels below 0.7; industry 2077 was the least technically efficient with an av-
erage level of only 0.52.

With regard to scale efficiency change, it appears that scale efficiency declined in
twenty four, increased in twenty four, and showed no change in one industry. The larg-
est (in percentage terms) declines occurred in industries 2038, 2075, and 2096 whereas
the largest improvements occurred in industries 2053 and 2094. Scale efficiency levels
have been calculated for each individual industry and year.* Three industries (2043,
2075, 2087) where scale efficient in all periods. Twenty two industries (2011, 2021,
2022, 2023, 2024, 2032, 2036, 2035, 2037, 2041, 2045, 2046, 2047, 2062, 2063, 2066,
2068, 2079, 2084, 2085, 2092, and 2096) attained (on the average) scale efficiency lev-
els above 0.9, while seven industries (2026, 2053, 2074, 2076, 2080, 2091, and 2099)
attained scale efficiency levels below 0.7.°

With regard to the input-mix effect, it appears that mix efficiency has improved in
29 industries and declined in the rest. The largest (in percentage terms) improvements
occurred in industries 2011, 2021, and 2091, while the largest declines occurred in in-
dustries 2078 and 2064. It would be useful to identify the input mix changes which are
associated with positive or negative input-mix effects. To this end, we constructed all
possible input ratios and we calculated their rates of change for every time period. Then
we estimated Pearson correlation coefficients between each of the later variables and the
input-mix effect variable. Only two coefficients turned out to be statistically significant
at the conventional levels. Namely, those involving the time rate of change of the ratio
production worker hours to materials and the time rate of change of the ratio capital to
materials. Both coefficients were positive indicating a positive association between the
ratio of production workers to materials and that of capital to materials with input-mix
efficiency.

Technical change was the largest (in absolute value terms) component of the MPI
for more than half (twenty five) industries. Technical efficiency change was the largest
component in seventeen, scale efficiency change in five, and input-mix efficiency
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change in two industries. We may conclude, therefore, that for the period considered
and for the overwhelming majority of industries technical change and technical effi-
ciency change were the most important factors behind productivity changes, while the
role of scale efficiency change and input-mix efficiency change was limited.

Table 1. The Components of the Malmquist Indices of TFP Growth* (geometric aver-
ages from 1986/87 to 1995/96) %

Industry Industry
Code | O | @ | ® | @ | coe |l O | @ | ® | @
2011 -0.10 0 | -0.11 1.61 2062 0.67 -0.51 0.21 0.07

2013 0.69 0.53 [ -0.49 | -0.55 2063 0.33 328 | 0.54 0.8
2015 2.14 1.40 | -2.30 0.92 2064 1.99 1.06 | -1.89 [ 0.66

2021 -0.97 0 [ -0.58 1.59 2066 1.41 -1.63 021 | -0.29
2022 -0.03 | -0.41 | -0.06 0.28 2067 0.80 0| 023 [-0.18
2023 136 | -451 | -0.06 | -0.18 2068 -1.9 0 | 077 | -0.56
2024 1.75 1.1 0.52 | -0.06 2074 0.41 1.65 | -1.21 0.9
2026 135 | -2.36 0.27 | -0.08 2075 6.13 0 |-472 [ 0.89
2032 0.14 1.72 0.21 | -0.08 2076 3.95 0 |[-1.79 [-2.39

2033 1.99 | -2.26 | -0.51 0.96 2077 245 | -3.48 | -024 | 0.76
2034 091 | -2.65 0.68 0.39 2079 1.35 -0.5 | -033 | -0.29
2035 1.04 | -2.48 0.29 | -0.52 2082 4.56 0 -1.5 | -0.11
2037 0.58 134 | -1.24 0.81 2083 227 0| 088 [-1.07
2038 2.53 1.68 | -2.62 0.83 2084 352 | 284 | 033 | 039
2041 0.64 | -1.97 0.05 0.28 2085 096 | -0.51 -04 | 0.55

2043 0 0 [ -0.62 0.38 2086 4.01 0| -152 | 017
2044 1.07 2.04 0.53 | -1.04 2087 4.62 0 |-1.59 | 057
2045 1.56 0.85 0.99 0.54 2091 040 | -2.69 1.15 | 2.44
2046 1.66 0 0.15 | -0.03 2092 -1.05 | -2.71 0 | 031
2047 0.32 0 0.14 | -0.31 2095 2.33 037 | 0.17 | -0.57
2048 1.85 | -097 [ -0.46 0.88 2096 5.98 1.17 | -342 | 0.75
2051 -1.13 | -0.94 1.01 | -0.36 2097 -2.19 0| 224 0.6

2052 3.46 -3.1 -1.9 0.64 2098 0.62 -2.3 0.86 | 0.05
2053 0.05 | -1.05 2.99 0.28 2099 1.65 | -021 | -1.42 | -0.03
2061 1.4 0.17 0.01 | -0.28

* Obtained by subtracting 100 from the respective components
(1): TC; (2): EC; (3): SEC; (4): IME

Table 2 presents the average rates of TFP growth as implied by MPI approach and
the Divisia approach, by industry. According to the MPI approach, thirty two industries
experienced productivity gains from 1986/87 to 1995/96. The highest rates of produc-
tivity growth were attained by industries 2045, 2053, 2087, and 2096. The largest de-
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clines occurred in industries 2033, 2035, 2068, and 2092. According to the Divisia ap-

proach, twenty five industries experienced productivity gains.

Table 2. The Rates of TFP Growth From the Two Approaches (geometric averages
from 1986/87 to 1995/96) %

I“g(‘)‘;gy Malmquist* | Divisia I“g(‘)‘;gy Malmquist* | Divisia
2011 139 2048 2062 0.43 2035
2013 0.16 0.51 2063 5.02 2.13
2015 2.12 125 2064 1.80 0.88
2021 0.03 351 2066 2033 0.82
2022 2023 20.66 2067 0.85 0.73
2023 344 2.8 2068 171 20.65
2024 3.34 171 2074 174 20.85
2026 20.85 2078 2075 2.03 0.59
2032 1.99 0.02 2076 2035 71,08
2033 0.14 146 2077 20,51 124
2034 2070 71.80 2079 0.22 20.76
2035 1.69 172 2082 2.87 2.84
2037 1.48 0.17 2083 2.06 0.62
2038 238 1.05 2084 133 1.04
2041 .02 212 2085 0.57 20.86
2043 2024 423 2086 2.60 1.04
2044 26 11 2087 3.56 2.44
2045 4.00 1.63 2091 123 131
2046 178 0.18 2092 3.43 2.16
2047 0.15 148 2095 2.30 1.96
2048 128 20.10 2096 437 1.08
2051 144 250 2097 0.61 1.50
2052 7103 182 2098 20.81 71,08
2053 225 0.75 2099 20.03 0.07
2061 131 1.70

* Obtained by subtracting 100 from the MPI Index

It is obvious that the results from the two indices differ not only in the implied (av-
erage) magnitudes of productivity change but, in a number of cases, in implied direction
of the change (positive or negative). It would be certainly interesting to examine
whether the observed differences are systematic. To this end we employed the non pa-

rametric Wilcoxon Signed Ranks Test (Cooper et al., 2000). The relevant test statistic

T

_ Rp—-n(2n+1)/2

Jr*@n+1)/12

@),
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where 7 is the sample size and R/, is the sum of rankings corresponding to the Divisia

rates of productivity growth follows the standard normal distribution. The empirical
value of T is —4.45 implying that the rates of productivity growth from the two ap-
proaches have different distributions. Moreover, since the sign of the statistic is negative
and R, comes from the Divisia approach, the Wilcoxon test implies that the productiv-

ity growth rates from the latter index are systematically lower than those from the
Malmquist index.

The productivity growth rates from the 4-digit SIC industries were aggregated using
shares in the value of shipments as weights to assess productivity growth for the 2-digit
SIC Food and Kindred products industry. Figure 1 presents the results. As expected, the
MPI suggests a better performance of the industry under consideration relative to the
Divisia index and this holds for all but one (1992/93) periods of observation. The aver-
age annual rate of productivity growth from the MPI was 0.99 percent indicating a
moderate improvement, while from the Divisia was —0.009 percent indicating no change
over the ten year period considered.

0,06

0,04
OMPI

0,02 1 ODIVISIA

89/90 91/92 93/94

Rate of TFP growth

-0,02

-0,04 -

Period

Figure 1. Rates of Productivity Growth for the Food and Kindred Products Industry

Conclusions

The objective of the present paper has been to obtain estimates of productivity
growth for the 4-digit SIC food and beverage manufacturing industries in the US. To
this end, it utilized detailed information on output and inputs available by the NBER
and Balk’s (2001) decomposition of the Malmquist productivity index. According to the
empirical results:

a) The individual industries exhibited quite different patterns of productivity growth.
Some experienced very strong productivity gains, while in others productivity followed
a downward trend.

b) For the overwhelming majority of industries technical change and technical effi-
ciency change appeared to be the main forces behind productivity changes, while the
role of scale efficiency and input-mix efficiency changes was limited.

¢) The Divisia index of the NBER which relies on the highly implausible assump-
tion of perfect competition in both output and input markets results in a distribution of
productivity estimates that differs from the one implied by the MPI. The Wilcoxon test
offers evidence that the Divisia estimates are systematically lower than the MPI esti-
mates.
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The NBER manufacturing productivity growth estimates have been used as a de-
pendent variable in regression models looking at a variety of possible influences (e.g.
government regulation, global competition, risk, and concentration) on productivity in
US manufacturing. Given the statistically significant difference between the estimates
from Malmquist and the Divisia (growth accounting) approach considered in this paper,
future research should assess whether the empirical results of works concerning poten-
tial influences on productivity are sensitive to the choice of the dependent variable (that
is, sensitive to the choice of the index used in productivity calculations). This will cer-
tainly allow economists to provide more robust guidelines to the policy makers for fos-
tering productivity growth.

Notes

1. This holds since for a cone technology an input distance function is the reciprocal
v
. . L 1
of the corresponding output distance function, i.e., D} = —.

Dt
2. 1996 is the most recent year in which detailed data on output and inputs are avail-
able by the NBER at the 4-digit SIC level.
3. The level of technical efficiency with respect to the period ¢ technology (S”) is
obtained as the reciprocal of D (x',y") (Coelli et al. 1998).

4. The level of scale efficiency with respect to the S ! technology is obtained as the

TN
ratio 5 = 210Y ) (Baik 2001; Coelli, etal., 1998).
Dj(x",y")
5. Industries 2043, 2075, and 2087 were scale efficient in all periods according to the

measure of scale efficiency with respect to the period ¢ technology (S). In Table
1, however, they appear to have experienced declines in scale efficiency over 1986-
96. The relevant question is whether here there is a contradiction. The answer is no.
t+1
The change in scale efficiency between two periods is not calculated as

St
(that is, as the ratio of scale efficiencies in two production points belonging to dif-
ferent technology frontiers). According to equation (6) the change in scale effi-
ciency is actually calculated from movements along the same technology frontier.
In particular, the first term in the brackets in (6) is the change in scale efficiency
calculated from movements along the frontier of S’ while the second term is the
change in scale efficiency calculated from movements along the frontier of s*'.
Therefore, a constant scale efficiency along points belonging to different period

frontiers by no means imply that there is no change in scale efficiency (for addi-
tional details see Balk (2001), pp. 168-71 and 173-75).
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6. The former coefficient had a value of 0.11 and the later a value of 0.09. The statis-

ZVn—Z A

tic , where p is the Pearson coefficient estimate and # is the sample
A
2
V1=(p)

size follows the ¢ -distribution with n—2 degrees of freedom (Kintis, 1994). With
490 observations, the values of the statistic were 2.34 and 2.01, respectively, which
exceed the critical value at the 5 percent level (1.96).
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Appendix A:
Industry Codes and Descriptions
Ing;l(sitery Industry Description Ing;l(sltery Industry Description
2011 Meat Packing 2062 Cane Sugar Refining
2013 Sausages and Other Prepared 2063 Beet Sugar
Meats
2015 Poultry Slaughtering and Process- | 2064 Candy and confectionary
ing
2021 Creamery Butter 2066 Chocolate and Cocoa
2022 Cheese 2067 Chewing Gum
2023 Dry, Condensed, Evaporated 2068 Salted and roasted nuts and
Dairy Seeds
2024 Ice Cream and Frozen Deserts 2074 Cottonseed Oil Mills
2026 Fluid Milk 2075 Soybean Oil Mills
2032 Canned Specialities 2076 Vegetable Oil Mills
2033 Canned Fruits and Vegetables 2077 Animal and Marine Fats and
Oils
2034 Dehydrated Fruits and Vegetables | 2079 Edible Fats and Oils
2035 Pickles, Sauces, and Salad Dress- | 2082 Malt Beverages
ings
2037 Frozen Fruits and Vegetables 2083 Malt
2038 Frozen Specialities 2084 Wines, Brandy, Brandy Spirits
2041 Flour and Other Grain Mill Prod- | 2085 Liquors
ucts
2043 Cereal Breakfast 2086 Soft Drinks
2044 Rice milling 2087 Flavoring Extracts and Syrups
2045 Prepared Flour Mixes and Doughs | 2091 Canned and Cured Fish and Sea
Foods
2046 Wet Corn Milling 2092 Fresh or Frozen Prepared Fish
2047 Dog and Fat Food 2095 Roasted Coffee
2048 Prepared Feeds 2096 Potato Chips and Similar
Snacks
2051 Bread and Cakes 2097 Manufactured Ice
2052 Cookies and Crackers 2098 Macaroni and Spaghetti
2053 Frozen Bakery Products 2099 Food Preparations
2061 Raw Cane Sugar
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Appendix B:
Derivation of the Distance Functions Involved in Components of the MPI

The distance functions for the actual technology in period # were derived using
Data Envelopment Analysis (DEA) (Banker, Charnes, and Cooper, 1984). In particular,
for industry j

[D/' (" /)] = min ¢
subject to
" +Y'2 20
p/'x" - X'120
K'A=1
120

where Y’ is an 1X49 vector of outputs, X' is a 4X49 vector of inputs, K is a 49X1

vector of ones, and 1 is a 49X1 vector of intensity variables. The distance functions for
v It . .

the cone technology corresponding to the actual technology, [D; (3',x’")], was de-

rived from the problem above by dropping the constraint that the sum of the intensity
variables equals 1. Finally, distance functions involving inputs or/outputs from different

periods (e.g. D! (x',y"*"), D'*'(x', "), etc) have been calculated using the Simulation
procedure (OnFront 2, User’s Guide, pp. 11-12)



