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Abstract 
The definition and measurement of dynamic economic performance has been addressed 
obliquely in the literature with the notions of scope economies and capacity utilization 
measures, but little work has focused on develop the static theory analogs of efficiency 
measures into the dynamic context. This paper is an attempt to identify some of the con-
ceptual and methodological issues to be addressed. A model allowing for dynamic pro-
duction decisions in the face of inefficiency is presented to illustrate some of the issues 
and the extensions necessary to identify truly dynamic performance measures.  
 
Keywords:  
 
 
Introduction 
 The issue of dynamic efficiency is an important component in assessing capital ac-
cumulation patterns and growth. Early characterizations of efficiency over time focus on 
how the capital stock relates to the Golden Rule level (Phelps, 1961; Diamond, 1965). 
Others focus on how the presence of dynamic efficiency facilitates intergenerational 
transfer of assets (Weil, 1987) and can eliminate the prospect of speculative bubbles 
(Tirole, 1985). Abel et al. (1989) investigate if capital accumulation levels of OECD 
economies operate above or below Golden Rule levels. Most of these studies have a 
distinctly macroeconomic policy orientation. However, the extent of inefficient behav-
ior in the management of dynamic assets at the firm level has not been clearly character-
ized or modeled.  
 The determination of efficient behavior discussed here is temporal in nature by de-
scribing the degree of efficiency of the firm at a particular point of its adjustment path. 
The firm's optimal adjustment path over time and the steady-state may vary with tempo-
ral efficiency. This paper initiates a discussion of conceptual and methodological issues 
revolving around the measurement of economic performance when firm make decisions 
linked over time. A model allowing for dynamic production decisions in the face of in-
efficiency is presented to illustrate some of the issues and the extensions necessary to 
identify truly dynamic performance measures.  
 
Conceptual issues 
 When addressing the dynamic efficiency we need to distinguish between  
a) tracking efficiency over time (which involves modeling exogenous versus endoge-
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nous forces and the impact of covariates/environmental variables on econ perform-
ance), and  

b) persistence which involves identifying the contributions of structural (deterministic) 
sources and the stochastic sources.  

 The sources of economic dynamics are: 
• economic forces (for example, adjustment cost and financial constraint models), 
• technological characteristics (for example, physical/biological nature of produc-

tion, and vintage investment/stock nonconvexities like we see with lumpy in-
vestment), and  

• cognitive capacity. 
 To date, our models do not separate our these forces, and thus, can confound the re-
sults reported in the literature.  
 The economic forces can relate largely to adjustment processes which has been clas-
sically presented in the literature as a dichotomy between the short and long runs. The 
distinction between the short and long run becomes a prime consideration in determin-
ing the appropriate time scale of economic decision making strategies. These strategies 
focus on the choice of production factors assumed to be fixed when factor allocation 
decisions are to be made. All economic activity occurs in the short-run to the extent a 
factor (or factors) of production are taken as fixed. The long run refers to the firm plan-
ning ahead to select a future short-run production situation. The problem with the clas-
sical description of the short- and long-run is that the story of the envelope curve is not 
entirely consistent with the story motivating the distinction between the short and long 
run.i The long run consists of a range of possible short run situations available to the 
firm. As such, the firm always operates in the short run but plans for the long run. A 
more complete description of producer behavior in the long-run theory of cost concen-
trates on the planning problem involving the minimization of the discounted stream of 
costs. Such a characterization focuses on long-run costs as a stock rather than a flow 
concept. 

The classical approach characterizes both short- and long-run cost functions as flows. 
The long-run is merely the case where the fixed factor is now variable -- presumably 
because the time span under consideration is now long enough to view the problem as a 
short-run planning problem. This could entail describing the short-run to last 5 or 10 
years given capital adjustment rates estimated in the empirical literature. Viner’s (1931) 
idea of some factors being "freely adjusted" while others are "necessarily fixed" is suffi-
ciently vague to allow long-run costs to be considered a flow. Freely adjusted implies 
that altering the input levels of these factors does not impose a penalty on the firm other 
than a constant acquisition cost. 

The application of non-freely adjusted inputs presumably occurs because some addi-
tional costs must be absorbed by the firm beyond the acquisition cost. The introduction 
of adjustment costs can capture this phenomenon. Some factors are considered "fixed" 
in the short run, not because the operator is physically prevented from removing or in-
troducing more of the factor, but because the economic environment places a high cost 
on adjusting the factor level.  

Eisner and Strotz (1963) present an intertemporal approach describing optimal in-
vestment by allowing for gradual adjustment of quasi-fixed factors of production. Ad-
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justment is gradual rather than instantaneous because it is assumed the more rapidly 
quasi-fixed factors are adjusted the greater the cost. This relationship is captured by the 
cost of adjustment function that is assumed to capture all of the unobserved forces slow-
ing down the adjustment of some factors of production. In some cases there may be 
physical limitations in how quickly adjustment can occur. For example, in agriculture 
biological limitations may forestall complete and immediate adjustment. The cost of 
adjustment function defines the relationship between the cost (in either physical output 
or value terms) and the size of the adjustment (either net or gross). Consequently, the 
relative speed can be used to characterize the degree to which a factor is variable or 
quasi-fixed. A number of economists followed up on this basic concept of specifying a 
"black box" adjustment cost function representing sluggish adjustment by focusing on 
the properties of the adjustment cost function and its relationship with the firm's invest-
ment behavior. 

 
Distinguishing Between Adjustment Costs and Inefficiency 

The adjustment costs can be viewed as transaction or reorganization costs and may 
be either internally or externally driven. External adjustment costs arise from market 
forces or contractual obligations. With capital as a quasi-fixed factor, examples of ex-
ternal adjustment costs are expansion planning fees (e.g., architects, legal costs associ-
ated with zoning issues, design consultants) and imperfect capital goods markets. A firm 
intending to expand its capital base rapidly may be able to obtain more capital at a 
steeply increasing marginal cost because the rate of production of new capital goods 
may be insufficient. A firm may have to go to alternative credit sources to raise capital 
beyond the level traditional lending institutions may permit due to collateralization re-
quirements. With labor as a quasi-fixed factor, severance pay, job advertisement and 
other labor recruiting (search) costs are examples of actual costs incurred by the firm.  

Internal costs of adjustment are possible but are often not readily observed. These 
costs are the result of a reduction in productivity which occurs when more of the quasi-
fixed factor is absorbed (or released) too quickly. A firm may have personnel and train-
ing departments which are adequately budgeted and staffed for the normal replacement 
of quits and retirements. If the firm seeks to expand its work force, more capital and 
labor must be devoted to the personnel and training departments. With total inputs 
fixed, the level of output must fall. Many of the internal costs of adjustment can be 
viewed as learning. A manager seeking to expand his/her operation must spend more 
time learning how to effectively manage more resources. While some of this time may 
be devoted to more formal training (e.g., studying manuals, attending workshops) a por-
tion of this training time can be attributed to a loss in physical output due to the man-
ager's learning by production experience. With the manager's total time available fixed, 
less time is available to manage the operation since a significant block of time must be 
diverted to learning.  

How does sluggish adjustment differ from inefficiency? To the extent that external 
adjustment costs are imposed upon the decision maker, one cannot argue that the deci-
sion maker is inefficient in his sluggish reaction. In the case of internal adjustment 
costs, the learning component reflects a cognitive capacity to manage the changes I 
some factor levels and can be viewed as a reflection of managerial ability. These learn-
ing costs serve as source of inertia in adjustments that is eventually relaxed, albeit 
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slowly, to the point that the firm eventually arrives at a steady state equilibrium. How 
long this takes is an empirical issue that has been estimated.ii The story of inefficiency is 
that the decision maker misses optimality but has the ability to not miss; further, the 
inefficient decision maker may never learn from his mistake. The adjustment cost story 
is that the decision maker’s cognitive ability (for internal adjustment costs) or external 
forces for the gradual adjustment to a steady state. 

There are a myriad of notions related to efficiency that date back to Debreu (1951) 
and Koopmans (1951) and elaborated upon by many, many others. Technical efficiency, 
originating with, refers to the decision maker’s inability to operate on the boundary of 
the feasible production region. Allocative inefficiency refers to the decision maker’s 
inability to match up the necessary conditions for the optimization of the firm’s objec-
tive, leading to the operation at a non-optimal position on the frontier of a feasible pro-
duction region. From this starting point a hierarchy of related notions of cost and scale 
efficiency can be developed and these are presented nicely in Färe, Grosskopf and Lov-
ell (1993). In this article, the focus will be on allocative inefficiency and the dynamics 
of decision making, although generalizations to other efficiency notions can be accom-
modated. 
 
Temporal Efficiency and the Steady-State 

The adjustment cost hypothesis states current additions to the stock of capital are 
output decreasing at the time of investment but output increasing in the future by in-
creasing the future stock of capital. Thus, the firm's current investment decisions in-
volve a trade-off between instantaneous cost and the gains arising from future produc-
tion possibilities. The firm's optimal adjustment path over time and the steady-state are 
likely to vary with the degree of temporal efficiency. Temporal efficiency is a flow no-
tion of dynamic efficiency in that the firm's decisions are assumed to be made in the 
short run with a view to the long run.  
 
Characterizing Dynamic Efficiency: Functional or Function? 

The notion of efficient allocation of variable and quasi-fixed inputs in the long run 
can take on a criterion based on stock efficiency or temporal efficiency. The stock-, or 
functional-based notion of efficiency focuses on a capital trajectory that is a decision 
path where perfectly efficient decisions are made at each decision point over the time 
horizon. This is the efficiency characterization implied by Diamond (1965), Abel et al. 
(1989) and Thalmann (1996). Focusing on this definition of dynamic efficiency is ex-
tremely restrictive and not reflective of how decisions are made. If decisions are always 
made in the short run with a view to the long run, then efficiency is a temporal issue and 
not a comparison of trajectories. The temporal notion is also conditioned on past deci-
sions but reflects dynamic linkages of past decisions to future prospects. The temporal 
notion of allocative efficiency reflects the operator making the right current decisions 
towards long-run equilibrium.  

Both characterizations of dynamic efficiency are conditional notions. Temporal effi-
ciency is a conditional notion in that current decisions are efficient given all past (effi-
cient or inefficient) investment decisions. A stock-based efficiency measure is also con-
ditional since the decision trajectory from, say,  to to T  is efficient given all (efficient or 
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inefficient) investment decisions previous to  t=to.  Assuming ko is not long-run efficient 
due to unexpected price changes, for example, there is an inefficient trajectory at some 
point previous to the initial period,  to.  However, if investment decisions are made in 
the short run with a view to the long run, dynamic efficiency is a temporal notion and 
does not involve an explicit comparison of trajectories. As a result, the stock notion of 
dynamic efficiency does not reflect how investment decisions are made. 
 
 
Methodolgoical issues 

The approaches to measuring efficiency levels over time can be broadly classified as 
those emanating from data-driven empirical approaches and those based on structural 
models reflecting dynamic behavioral decisions permitting dynamic efficiency impacts. 
The value of both approaches is substantial. The data driven approaches can provide 
evidence and direction on where to look for inefficiency effects that the structural mod-
els may assume away. Rarely are the structural models so all-encompassing as to nest 
all sources of inefficiency. As the area of dynamic efficiency measurement gains greater 
attention, the interplay emerges between theory-driven applications as well as applica-
tions-drive theory. 

There are two issues on the agenda of dynamics and efficiency measurement:  
1) what is the evidence of inefficiency behavior over time (e.g., do firms get better, stay 

the same, get worse, get better then worse?, and  
2) what structural models of economic decision making combined with the technologi-

cal characteristics and cognitive capacity can be developed to explain the patterns of 
efficiency behavior?  

 An important question of interest is if we must deal with the two issues simultane-
ously, or can we sequentially address the two issues. Just measuring the efficiency level 
at each time point in isolation will surely yield biased results. The production technol-
ogy exhibits no technological forces suggesting dynamic linkages over time. Since there 
is no behavioral resource allocation model addressed, the choices of input use over time 
are taken exogenously.  

In general, endogeneity issues are rarely addressed by decisions taken in an earlier 
period influencing the distribution of the long-run efficiency level. Of course, it depends 
on a set of covariates that are generally denoted by the factors z that one specifies, and 
this is a cautionary note that should be sounded loudly. Surely, there are forcing factors 
and choices the decision maker can execute to influence the long-run inefficiency level 
and these are the variables you would include as covariates, z. A true unifying model 
should take into account the decision processes and choices associated with choosing 
the levels of these forcing factors influencing efficiency levels over time.  
 
Dynamic versus Time-Varying Efficiency Measures: 

Estimating the efficiency and productivity patterns over time is being revisited in the 
literature as the data sets become richer. Recent studies in the analysis of productivity 
changes find that there are serious problems in dealing with aggregate measures of pro-
ductivity. These studies indicate that the analysis of a sector or an industry focusing 
only on aggregate productivity measures may be misleading, presenting a simplistic 
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explanation of the process. Dhrymes and Bartelsman (1998) and Dhrymes (1991) find 
that two-digit industry wide productivity, and its growth over time, may be reduced 
considerably upon addressing the four-digit industry composition of the sample. Hence, 
a disaggregated analysis can provide a more detailed perspective of the dynamics of 
total factor productivity (TFP) growth when compared with the aggregate level analysis 
of TFP growth. Pakes and colleaguesiii refine the effort by taking on micro-level panel 
data sets to model the economic interactions leading to productivity gains and some ef-
ficiency impacts. Exploiting the heterogeneity in the micro-level data (plants or firms) 
leads to identifying the weakness of the theory developed with a macro view of behav-
ior. One example, is where the aggregate modeling suggests capital adjustment is 
smooth process, the micro-level evidence strongly suggests the presence of discontinu-
ous (or lumpy) capital adjustment (Nilsen and Schiantarelli, 2003; Celikkol and Ste-
fanou, 2004). The presence of discontinuous capital changes can lead to much different 
characterizations of efficiency since capital adjustment patterns may lead a firm to ap-
pear to be overcapitalized in some periods and under capitalized in others. 

The modeling of time-varying efficiency historically appears as the specification of 
time as a regressor which leads to the challenge of disentangling the two roles time 
plays; namely, time as a proxy for technical change in the deterministic kernel of the 
stochastic production frontier versus time as an indicator of technical efficiency change 
in the composite error term. Historically, three popular specifications are present in the 
literature, historically (Kumbhakar and Lovell, 2000):  

• ( )it iu u γ t= ,  where ( )γ t  is a parametric function of time and ui is a nonnegative 
random variable (Kumbhakar, 1990, and Battese and Coelli, 1992);  

• it i tu u γ= ,  where tγ  are the time effects represented by time dummies and the ui 
term can be either fixed or random producer-specific effects (Lee and Schmidt, 
1993); and, 

• 2
1 2 3it i i iu Ω Ω t Ω t= + +   where the Ω ’s are producer-specific parameters 

(Cornwell, Schmidt and Sickles, 1990). 
A new generation of specifications is emerging that present themselves as dynamic 

frontier approaches and have the goal of sorting out the long-run from the short-run in-
efficiency levels. Ahn, Good and Sickles (2000) allow for the future arrival of unex-
pected inefficiency sources by focusing on an autoregressive specification of technical 
efficiency. This error structures intended to capture the sluggish adoption of technologi-
cal innovations that relate to long- and short-run dynamics rather than incorporating a 
structural model of sluggish adoption. Tsionas (2006) allows for a stochastic and un-
known long-run efficiency level by taking a Bayesian perspective on generating the 
short- and long-run efficiency distributions. The basic proposition is that long-run inef-
ficiency cannot be a deterministic limiting point when you start off with a stochastic 
measure of short-run (or instantaneous) inefficiency.  
 
Structural Modeling Approaches 

The structural approaches to modeling dynamic efficiency involve both primal and 
dual specifications. The earliest efforts go back to Shephard and Färe (1978) that 
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evolved into the Dynamic DEA models in Färe and Grosskopf (1996). This approach 
takes on a network theory orientation addressing an intertemporal substitution among 
inputs, outputs and intermediate outputs, and is particularly well-suited for multistage 
production processes. By preserving the time-ordered sequence of decisions, the timing 
of decisions permits the impact of technical inefficiency at one stage to be transmitted to 
later stages. Sengupta (1995, 1997) take a primal perspective with the explicit specifica-
tion of a smooth adjustment cost function. Working with a linear-quadratic specifica-
tion, closed form solutions are presented at the cost of modeling additional production 
flexibility. Nemoto and Giro (1999, 2003) take on a primal focus as well by building a 
discrete time mathematical programming model as it related to dynamic optimization 
theory. The fundamentals of this approach builds on Kleindorfer et al. (1975) which 
constructs the discrete time variants of the optimal control theory’s Pontryagin Princi-
ple.  

Two new directions build on the dynamic production analysis frameworks found in 
the same issue of the Journal of Productivity Analysis. Silva and Stefanou (2007) de-
velop a myriad of efficiency measures associated with the dynamic generalization of the 
dual-based revealed preference approach to production analysis found in Silva and Ste-
fanou (2003). Vaneman and Triantis (2003) take on a system dynamics approach to 
specify the axioms of dynamic production and then build off this foundation in Vane-
man and Triantis (2004) to measure a form of dynamic technical efficiency. By focusing 
on system performance, they explicitly take into account the interactions and feedback 
mechanisms that explain the causes of efficiency behavior, the dynamic nature of pro-
duction, and non-linear combinations of the input/output variables.  

Another tack builds on the shadow value function approach pioneered by Toda 
(1967) and Atkinson and Halvorson (1980), and then extended by Stefanou and Saxena 
(1988), Atkinson and Cornwall (1994), and Kumbhakar (1997). In this context both ac-
tual and behavioral value functions are constructed to capture how inefficiency leads to 
deviations from optimal decisions. The next section develops a model to illustrate the 
generalization of the shadow value function from an intertemporal perspective.iv 
 
 
Shadow value function model 
 Consider the profit-maximizing firm facing adjustment costs with the objective to 
maximize the discounted flow of net revenue 

 [ ]( ) max ( , ) ( )a rτ
o I

J k e π w K qK C I dt
∞

−
= − −∫  (1) 

subject to 
, (0) oK I δK K k= − =  

where π(w, K) is the short-run profit function defined as  
( , ) max ( , )

x
π w K f x K wx= −  

with w being the price of variable input, x, normalized by the output price; f(x, K) is the 
production function conditional on capital stock, K; C(I) represents the adjustment cost 
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characterized by  0II C⋅ ≥   and  0IIC >   for all I. This leads to the dynamic program-
ming equation 
 ( ) max ( , ) ( ) ( )a a

o o o o kI
rJ k π w k qk C I I δk J = − − + −   (2) 

This equation presents the opportunity cost of the production plan, rJ a, equals the in-
stantaneous cash flow, π(w, ko) - qko - C(I), plus the instantaneous change in long-run 
profit, / �a a a

kdJ dt K J= . The necessary condition for intertemporal profit maximization is 

 ( ) a
I kC I J=  (3) 

or the marginal adjustment cost equals the shadow value of the capital stock. 
 In the event of a misallocation of capital, the equality in (3) does not hold. Figure 1 
indicates the regions where the behavioral investment differs from the actual (profit 
maximizing) investment. To create an optimization structure for the behavioral invest-
ment behavior, we define an implicit (or behavioral) relationship where the shadow 
value of capital is augmented to create an equality; i.e., 
 ( )b a b

I k kC I µJ J= =  (4) 
This suggests the dynamic programming equation for the behavioral problem is  
 ( , ) ( ) ( )b b b a

o o o krJ π w k qk C I I δk J= − − + −  (5) 
 
 

Figure 1 
 
 

As stylized problem to illustrate the progression of the decision maker from being 
poorly performing to perfectly performing, consider the two stage problem where from 
period (o, τ) the firm makes mistakes such that µ ≠ 1 in stage I and then is perfectly ef-

C(I) 

I 

a
kI JC <  

a
kI JC >  



26 AGRICULTURAL ECO+OMICS REVIEW 

ficient in allocating capital thereafter. The optimization problem in (1) can be parti-
tioned into two segments such that 

 { } { }
0

( ) max ( , ) ( ( , ) ( )
τ

tτ rt rτ
o I

τ

J k e π w K qK C I dt e e π w K qK C I dt
∞

−= − − + − −∫ ∫  (6) 

Using Bellman’s Principle of Optimality, we can rewrite this as 

 { }
0

( ) max ( , ) ( ) ( )
τ

rτ rτ
o τI

J k e π w K qK C I dt e V k= − − +∫  (7) 

where kτ is the capital stock consistent with the optimal capital accumulation up to time 
period τ, and 

 { }( ) max ( , ) ( )rτ
τ I

τ

V k e π w K qK C I dt
∞

−
= − −∫  (8) 

V(kτ ) can be expressed in the form of a flow as 

 { }( ) max ( , ) ( )rτ
τ I

τ

V k e π w K qK C I dt
∞

−
= − −∫  (9) 

or 

0
0 0

( ) ( ) ( ) �

τ τ

τ o kV k V k dV V k KV dt= + = +∫ ∫  

Hence, we can rewrite (7) as 

 { }0
0

( ) ( ) max ( , ) ( ) �

τ
rτ rτ rτ

τ kI
J k e V k e π w K qK C I e KV dt− − −= + − − +∫  (10) 

The dynamic programming equation is 
 ( ) max ( , ) ( ) ( ) ( )�a a rτ rτ

o o o k k τI
rJ k π w k qk C I K J e V e V k− − = − − + + +   (11) 

where the superscript a implies the actual value function. The term a rτ
k kJ e V−+   

presents the shadow value of capital into components attributable to stage I, Jk, and to 
stage II, e-rτVk. The necessary condition for optimality in the presence of allocative inef-
ficiency (i.e., µ ≠ 1) is 
 ( )b a rτ b rτ

I k k k kC I µ J e V J µe V− − = + = +   (12) 

We can express the optimized behavioral value function, J b, as 
 0 0 0( ) ( ) ( , ) ( ) ( )�b rτ b b b rτ

o k krJ k e V k µ π w k qk C I K J µe V− −= + − − + +  (13) 
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and the actual behavioral function, J a, as 
 0 0 0( ) ( ) ( , ) ( ) ( )�b rτ b b b rτ

o k krJ k e V k µ π w k qk C I K J µe V− −= + − − + +  (14) 
Equations (13) and (14) together imply 

1( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( ) 0� �a b b a a a rτ b b rτ rτ
o o k k k k oJ k J k C I C I K J e V K J µe V µ e kr

− − − = − + + − + + − ≥ 
 

When the decision maker consistently over-invests (µ >1) the gap between the actual 
and behavioral value functions is dominated by the differences in the instantaneous ad-
justment costs which is the current period cost. When the decision maker consistently 
under-invests (µ <1), the gap between the actual and behavioral value functions is 
dominated by the difference in the instantaneous capital gain between the actual and 
behavioral decisions and the value potential in stage II starting undercapitalized. 
 
 
Table 1. Signing the Within and Between Periods Costs of Allocative Inefficiency 

 ( ) ( )b aC I C I−  
( )
( )

�

�

a a rτ
k k

b b rτ
k k

K J e V
K J µe V

−

−

+

− +
 (1 ) ( )rτ

oµ e V k−
−  

1µ <  POSITIVE INDETERMINATE POSITIVE 

1µ>  NEGATIVE INDETERMINATE NEGATIVE 
 
 
The signs of the components are presented in table 1. The first term, ( ) ( )b aC I C I− , re-
flects an instantaneous cost reflecting the difference in the current period adjustment 
cost arising from under- or over-investment.v The next two terms reflect the distribution 
in costs over time. The first of these terms,  

( ) ( )� �a a rτ b b rτ
k k k kK J e V K J µe V− −+ − + , 

reflects the change in the instantaneous capital gain (or loss) associated with an adding 
(or not allocating) another unit of capital. We can decompose this term further to reflect 
the impact of the instantaneous capital gain/loss in stage I, � �a a b b

k kK J K J−  , and impact 
of an investment mistake in stage I the instantaneous capital gain/loss in the stage II, 
( )(1 )� �a b rτ

kK K µ e V−
− − . The second of these terms, (1 ) ( )rτ

oµ e V k−
− , reflects the impact 

of stage I inefficiency on the value function in stage II.  
A simple graphical illustration is presented in Figure 2. The optimal capital trajectory 

is the blue line, K0 A0 A1. Consider the case a mistake is made at time t1 where µ = µ1 >1 
leading to overinvestment in that period. If this overinvestment is expected to persist 
indefinitely, then the capital trajectory continues from B0 to B1. The problem with this 
characterization of inefficiency is that it is implicitly assumes that there will be no more 
mistakes between t1 and the terminal time.  
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Figure 2 

 
Future directions 
Distribution of Trajectories  

The shadow value function model starkly illustrates the need to generate the distri-
bution of trajectories associated with the distribution of inefficiencies over time. On this 
score, the approach of Tsionas (2006) can offer a useful starting point. The fuller exten-
sion should also account for the decision processes and choices associated with choos-
ing the levels of these forcing factors influencing efficiency levels over time. The first 
steps in addressing the structural model with a distribution of inefficiency-influenced 
trajectories is to specify an equation of motion on how the inefficiency changes over 
time. The approach of Ahn, Good and Sickles (2000) can be augmented to include the 
structural nature of adjustment and the distributed impact of present inefficiency into the 
future. At present, the Ahn, Good and Sickles approach specifies two of the three essen-
tial elements of a structural model: a) production feasibility with the production function 
specification, and b) an equation of motion on efficiency change with the autoregressive 
error specification. The element that is missing is the behavioral constraints relating to 
optimization problem endorsed by the decision maker. 
  
Learning and Efficiency  

When looking at the cognitive capacity, the notions of learning and efficiency come 
together. Identifying the dynamic-based costs of inefficiency in table 1 is only half of 
the story. There are benefits associated with making mistakes and when the benefits are 
realized there is evidence of learning taking place.  

Focusing on learning as an accumulation of knowledge, the acquisition of additional 
knowledge necessarily draws on information acquisition. Knowledge plays an important 
role in the process of growth by choosing the right things to do (supporting the selection 

K 

time 
T t1 

K0 

A0 

B0 A1 

B1
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systems of technologies) and by doing the right things better (the understanding and 
execution of an implemented technology). Knowledge has value if one can translate it 
into actions or decisions that lead to enhanced cognitive or economic value. Two fun-
damental challenges to the process are: a) how does one acquire more knowledge and b) 
how does one translate the knowledge gained into action. Unlike most studies of infor-
mation and technology decisions which take a recursive approach to modeling informa-
tion acquisition then action on that information, Saha, Love and Schwart (1994) and 
Genius, Pantzios and Tsouvelekas (2006) jointly model the degree of technology adop-
tion as a process jointly determined with the decision maker’s information acquisition 
processes. The joint determination of these decisions reflects movement toward a long-
run structural measurement of learning and technological decisions, which can then 
translate into measuring efficiency gains and innovation gains. 

Firm decision makers react to competitive pressures by balancing the trade off be-
tween exploiting the full productive potential of their systems and technologies and 
adopting innovations. Both avenues can lead to enhanced profitability. Sustaining com-
petitiveness over the long run involves attention to both growth prospects: (i) innova-
tions are needed to keep pushing the competitive envelope, and (ii) efficiency gains are 
needed to ensure that implemented technologies can succeed. The effective manage-
ment of knowledge and its acquisition (i.e., learning) contributes to both sources of 
profitability growth.  

An emerging direction is to consider the directional distance function approach in a 
dynamic context. The start to this conceptualization can be found in Silva and Stefanou 
(2007)  

1( , , , ) min{ : ( , )) ( : )}g t t t t gt gt t gt t t tF y x I k γ γ x γ I V y k−= ∈ , 
where this measure computes the maximum equiproportionate variable input reduction 
and gross investment expansion in the input requirement set, V(yt: kt), to itself and 
0<Fg(yt,xt,It,kt)≤1. Silva and Oude Lansink (2006) present a first venture into this en-
tirely new area and demonstrate how efficiency measures can be additive measures of 
efficiency measures rather than ration measures and allow the separation of the contri-
bution of individual variable and dynamic factors to inefficiency. 
 But how learning is modeled in this context needs to be clearly specified. Is the firm 
Planning to Learn vs. Planning to Execute. This can influence the inefficiency measure 
in terms of modeling decisions as exogenous or endogenous. When the resources and 
efforts to mount a significant increase in the base of knowledge are considerable, the 
there is also the option value to learn, which can lead to modeling learning-based ad-
justment paths.  
 
 
Concluding comments 
 The multiple directions observed in the literature to date to a great extent reflect a trade 
off between power of the theory and power of the data. The theory imbedded in struc-
tural models offers power in terms of informing our model specification of behavioral 
constraints and error structures as we look to rationalize the data. A theoretically 
founded structural model offers the further advantage of extending our models to ad-
dress related issues in the area of dynamic economic performance such as productivity 
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growth, capacity utilization, the impact of multiple output production scenarios and the 
scope economies they imply. However, the data can often get in the way and our results 
can point out some disturbing shortcomings in the power of the theory-based models. 
With the emergence of longer panels at the enterprise and plant levels, we are observing 
a phenomenon of the persistence of inefficiency; that is, firms are not necessarily doing 
things better. We can try to rationalize these results by focusing on the structural foun-
dations of decisions making or the data-driven modeling building. For example, is the 
persistence of inefficiency: 

• an artifact of the data in terms of the variable constructions and definitions (a no-
torious problem when considering the efficiency of capital assets and whether 
they are valued at book value or market value);  

• an artifact of the model that is not able to capture all the sources driving ineffi-
ciency; or,  

• a shortcoming in our characterization of decision making protocols which re-
lated to the behavioral objectives, or finally, if the cost of inefficiency of some 
small level α>0 is not offset by benefit of being perfectly efficient.  

 The static modeling of inefficiency has made great strides on both theoretical and 
methodological fronts over the past 30 years and these efforts are directing future atten-
tion to the measurement of dynamic economic performance. This paper has tried to lay 
out some perspectives on the dynamic case, but the landscape is still in need of clear 
articulation.  
 
 
5otes 
1 Alchian (1959) and De Alessi (1967) recharacterize long-run costs as a discounted 

flow of costs that involve a sequence of production targets as represented by the vol-
ume of production over the time horizon. Stefanou (1989) recasts these formulations 
into a dynamic adjustment framework to create long- and short-run value functions. 

2 For example, see Epstein and Denny (1983) for U.S. manufacturing, Taylor and 
Monson (1985) for southeastern U.S. agriculture, Vasavada and Chambers (1986) 
for aggregate U.S. agriculture, Chang and Stefanou (1988) for Pennsylvania dairy, 
Howard and Shumway (1988) for aggregate U.S. dairy production. 

3 Important references include Pakes and McGuire (1994), Ericson and Pakes (1995), 
Olley and Pakes (1996). 

4 Rungsuriyawiboon and Stefanou (2007) develop the model in greater detail and pre-
sents the econometric estimation of technical and allocative inefficiency for U.S. 
electric utility production.  

5 The use of Figure 1 illustrates the relative magnitudes of these marginal adjustment 
costs. When µ>(<)1 the firm is over- (under-) investing, which implies 

( ) ( ) ( )a b
I IC I C I> < . 
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